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X n1 := (X1, ..,Xn), Xi�s i.i.d. on Rd with density p.
f : Rd ! Rs

local condition
1
n ∑ f (Xi ) = an (Local)

(an)n�1 is a convergent sequence.

Either an ! EX (LLN range) or an ! a 6= EX (LD).
Question What about the distribution of (X1, ..,Xkn ) given Local when

kn/n ! 1 long runs

n� kn ! ∞ not all

Notation p
�
X k1 = x

k
1

�� 1
n ∑ f (Xi ) = an

�
=: pan

�
X k1 = x

k
1

�
.
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Take f (x) = x , d = s = 1, k = 1.

1
n ∑Xi = a

Gibbs conditioning principle (local form) with an �xed =a.

φ(t) : = E exp tX

m(t) =
d
dt
log φ(t), s2(t) =

d2

dt2
log φ(t), µ3(t) :=

d3

dt3
log φ(t)

t such that m(t) = a

πa(x) :=
exp tx
φ(t)

p(x)

Recall Eπa (X ) = a, Varπa (X ) = s2(t). Then (extensions (Diaconis and
Friedman (1988)k = o(n), Dembo and Zeitouni (1995) lim supn k/n < 1)Z

jpa � πaj dx ! 0 as n! ∞

sup
A2B(R)

Pa(A)�Πa(A) ! 0.
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Relevance of this question for IS?

pA
�
X k1 = x

k
1

�
: = p

�
X k1 = x

k
1

��� 1
n ∑ f (Xi ) 2 A

�
�

Z
A
gu
�
X k1 = x

k
1

�
p
�
1
n ∑ f (Xi ) = u

���� 1n ∑ f (Xi ) 2 A
�
du

= : gA
�
X k1 = x

k
1

�
.

a mixture of the approximating densities with weigths charging A. (no
dominating point in this approach).
If gu is "good"

pu
�
X k1 = x

k
1

�
= gu

�
X k1 = x

k
1

�
(1+ o(1))

then we expect

pA
�
X k1 = x

k
1

�
= gA

�
X k1 = x

k
1

�
(1+ o(1))

which with kn "close to n" is OK when sampling under gA is possible.
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A recursive approximation (turn to f (x) = x , d = s = 1 for convenience)

pan
�
X k1 = x

k
1

�
=

k�1
∏
i=0

p
�
Xi+1 = xi+1j Sn1 = nan,X i1 = x i1

�
Now for any α (invariance of conditional densities under any tilting)

p
�
Xi+1 = xi+1j Sn1 = nan,X i1 = x i1

�
= πα

�
Xi+1 = xi+1j Sn1 = nan,X i1 = x i1

�
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πmi
�
Xi+1 = xi+1j Sn1 = nan,X i1 = x i1

�
= πmi (Xi+1 = xi+1)

πmi
�
Sni+1 = nan � s i1

�
πmi

�
Sni = nan � s i�11

�
with s i1 := x1 + ..+ xi , with mi making the ratio simple to evaluate.
A precise evaluation of the dominating terms in this latest expression is
needed in order to handle the product in the joint density. Center, reduce,
Edgeworth expansions with

mi := m(ti ) :=
1

n� i + 1
�
nan � s i�11

�
. Pb: the orders of magnitude of the xi�s in order to control the kn
products =) under the conditional sampling Develop some maximal
inequalities. Use Edgeworth expansions, etc.
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Instead of arbitrary xi�s consider Yi�s random under the conditional
distribution (typical paths).
Order of magnitude:

max
1�i�n

jYi j = OPan (log n)

(not large, but ! ∞)
Theorem:

pan
�
X kn1 = Y kn1

�
= gan

�
Y kn1

� �
1+ oPan (δn)

�
gan
�
Y kn1

�
= pan

�
X kn1 = Y kn1

� �
1+ oGan (δn)

�
For IS: this is OK (sample under gu)
Remark: Implies

sup
B2B(Rkn )

Pan (B)� Gan (B)! 0.

Michel Broniatowski, Virgile Caron (Institute) Conditioned random walks, IS June 27th, 2012 7 / 27



gt (y k1 ) :=
k�1
∏
i=0

gi (yi+1j y i1).

gi+1(yi+1j y i1) = Cip(yi+1)n (αβ+ an, α, yi+1)

where n (µ, τ, x) is the normal density with mean µ and variance τ at x .
Here

α = s2i ,n (n� i � 1) , β = ti ,n +
µ
(i ,n)
3

2s4i ,n (n� i � 1)
The terms in α and β depend on the past values and on the m.g.f. of X .
Remark: coincides with the exact gaussian conditional density in the
gaussian case, with k up to n. For �xed k : coincides with the usual
tilted+rate. When kn large, the quadratic term in the
gi+1(yi+1j y i1)gi+1(yi+1j y i1) is dominant (reduces the variance). When
conditioning on an average of the f (Xi )0s a change in the formula.
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Consequence

pA
�
X kn1 = Y kn1

�
= gA

�
Y kn1

�
(1+ oPA (δn))

gA
�
Y kn1

�
= pA

�
X kn1 = Y kn1

�
(1+ oGgA (δn))

for any "thick" A 2 B (R) and

sup
B2B(Rkn )

PA(B)� GA(B)! 0.
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Trajectories
Normal Case, CLT
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Trajectories
Normal Case, MD
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Trajectories
Normal Case, LDP
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Trajectories
Exponential Case, CLT
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Trajectories
Exponential Case, MD
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Trajectories
Exponential Case, LD
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Trajectories
Normal Case, R2, MD

Michel Broniatowski, Virgile Caron (Institute) Conditioned random walks, IS June 27th, 2012 16 / 27



f : Rd ! R. X1, ...,Xn i.i.d. f (X1) light tails. an large (high level,
an >> Ef (X1)). Draw x : f (x) of order an.
For

P
�
all the X0i s � an

�� 1
n ∑Xi > an

�
! 1

f (x) = x2, L (X) =Symmetric Weibull shape parameter 2, an = 10,
n = 1000
No more Gibbs equivalent in this asymptotics (B-Cao, 2012 Arxiv)
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Trajectories
Blue:Tilted, Red:Adaptative Method
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How long are good conditioned sampled runs?
An empirical benchmark: the relative error as a function of kn

RE (k) := EGu

��pu(Y k1 )� gu(Y k1 )��
pu(Y k1 )

to be estimated.

Remark: When A = (a,∞), the same indicators for kn
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Evaluate k = kn
Simulate u in A following

L
�
1
n ∑ f (Xi )

���� 1n ∑ f (Xi ) 2 A
�

(Approximate the distribution (ex: LDP=)use Petrov, etc), or
Metropolis-Hastings)

Simulate Y k1 with density gu � p
�
.j 1n ∑ f (Xi ) = u

�
.

Simulate Y nk+1 with tilted density at point mk
Evaluate the IS ratio

n

∏
i=1
p (Yi )

gu
�
Y k1
� n

∏
i=k+1

πmk (Yi )
1A

�
1
n ∑ f (Yi )

�

Repeat from top L times
Average =) fPn
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PropertiesStandard IS (i.i.d. replications under the tilted at dominating
point). In LDP, for

1
n ∑ f (Xi ) > a

VarπacPn proportional to pn (e.g. Sadowsky and Bucklew)

[VargAfPn proportional to pn� k (optimal on the kn �rst summandsfPn has a small asymptotic variability when evaluated on classes of subsets
of Rn whose probability goes to 1 under the sampling gA .
Defaults: many steps, time run (obviously not worth for standard cases)
Accuracy (no dominating point)?
Compare with other methods in quasi-standard cases

Michel Broniatowski, Virgile Caron (Institute) Conditioned random walks, IS June 27th, 2012 23 / 27



X1, ...,X100 where X1 has a normal distribution N(0.05, 1) and let

E100 :=
�
x1001 :

jx1 + ...+ x100j
100

> 0.28
�

P100 = P ((X1, ...,X100) 2 E100) = 0.01120.
simple disymmetric case. The standard i.i.d. IS scheme introduces the
dominating point a = 0.28 and the family of i.i.d. tilted r.v�s with
common N(a, 1) distribution. The resulting estimator of P100 is 0, 01074
(with L = 1000), indicating that the event S1,100/100 < �0.28 is ignored
in the evaluation of P100. Also the hit rate is of order 50%. It can also be
seen that S1001 /100 < �0.28 is never visited through the procedure.
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Comparison with the cross entropy method. The sampling distribution
is chosen as a normal one with variance 1, as adapted to this situation; the
mean is estimated recursively through Kullback minimisation. When the
initialisation mean is close to 0.28 then the performance is similar to the
classical IS scheme, since the successive means keep close to 0.28; at the
contrary when it is de�ned close to -0.28 the sequence of sampling
distributions tend to concentrate around N(�.28, 1) and the resulting
estimate produces a relative error of order 100%. Indeed it is roughly���10�4 � 10�2� /10�2

�� since PE�100~10�4 where
E�100 :=

�
x1001 : x1+...+x100100 < �0.28

	
.
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Rôle of point conditioning in stats:
su¢ ciency

pθ (x
n
1 j t (xn1 )) independent upon θ

Rao-Blackwell: S(X n1 ) estimator of θ. t(xn1 ) any statistics

MSE (E (S(X n1 )j t(X n1 ))) � MSE (S(X n1 ))

Optimality when t is su¢ cient (Lehman-Sche¤é) PB: estimate
E (S(X n1 )jT (X n1 )) .
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Observe xn1 , and t (x
n
1 ) ; in exponential families t (x

n
1 ) =

1
n ∑ t(xi ) = tobs

(converges under θ0).
Choose kn
Simulate according to gtobs (.) � pθ

�
.j 1n ∑ t(Xi ) = 1

n ∑ t(xi )
�
(ind upon

θ)
Estimate E (S(X n1 )j t(X n1 ) = t (xn1 )) averaging the values of S on the kn
realizations under gtobs
Remark t su¢ cient for gtobs (.), so put any θ in the de�nition of gtobs
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